
MOTIVATION

Remote Exploration and Experimentation (REE)
Project

Goal: enable new type of scientific investigation by bringing
commercial supercomputing technology into space.

This will permit highly autonomous missions with greater
flexibility and on-board analysis capability.

Traditional radiation hardening

• Lowers clock speed
• Increases power requirements
• Takes a number of years to complete

Compared to a commodity off-the-shelf component, a
radiation-hardened component has a

• Power:performance ratio an order of magnitude lower,
• Cost that is several orders of magnitude higher.

REE Solution

Use COTS hardware and handle resulting faults in software:

• Fault-tolerant system software
• Fault-tolerant routines within applications:

fault-harden its dominant routines ← Poster focus

Also at Aero-2000: Ferraro et al., “Detailed Radiation Fault
Modeling of the REE Testbed Architecture.”

✬ ✩A-1(1)

SELECTED PREVIOUS WORK

Algorithm-Based Fault Tolerance

• Huang and Abraham[1] introduce algorithm-based fault
tolerance, a technique which encodes matrices using checksum
matrices. These are then used in order to detect and correct
faults in matrix operations. They address matrix operations
performed using processor arrays with regard to detecting
errors generated by a faulty processor within the array.

• Jou and Abraham[2] present an ABFT error detection scheme
for FFT networks. The method employs an encoding and
decoding scheme to detect single errors.

Result Checking

• Blum and Wasserman[3] suggest result-checking as a way of
enforcing hardware/software reliability. Result-checking
relies on developing tests which can confirm the validity
of operation output. Their work focuses on computation
errors inherent in the system, rather than on environmentally
induced faults.

ABFT and Result Checking

For purposes of detecting errors in operations that are expressed
in linear form, ABFT and result checking are essentially the same.

[1] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations.
IEEE Transactions on Computers, 33(6):518-528, 1984.

[2] J.-Y. Jou and J. A. Abraham. Fault-tolerant FFT networks. IEEE Transactions on
Computers, 37(5):548-561, 1988.

[3] M. Blum and H.. Wasserman. Reflections on the Pentium division bug. IEEE
Transactions on Computers, 45(4):385-393, 1996.

FAULT DETECTION

Checksum Methods

Are used to validate results returned by a numerical subroutine.

General Considerations

The postcondition : A necessary (but possibly not sufficient)
relationship between the subroutine inputs and computed
outputs.

Checking the postcondition provides a powerful sanity check on
the proper functioning of the subroutine.

Postconditions considered here involve comparing two linear
maps, which are known in factorized form:

L1L2 · · ·Lp
?= R1R2 · · ·Rq .

A typical fault to data fans out across matrix outputs, but a
single probe with vector w catches most errors:

L1L2 · · ·Lpw
?= R1R2 · · ·Rqw

Design issues:
• The choice of the probe vector w.
• The choice of comparison method ?=.

First is relatively straightforward: elements of w should not vary
greatly in magnitude so that results figure equally in the check.

Some algorithms (e.g., FFT) allow tailored choice of w.

✫ ✪
C-1(3)

FAULTS AFFECTING FFT

Difference matrix caused by a single fault during a 2D FFT in the
REE hardware testbed.

Error matrix

Note the fanout during the FFT butterfly calculation in this
section through the faulty row.

0 50 100 150 200 250 300 350 400 450 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−6

✬ ✩C-2(4)

DEVELOPING COMPARISON TESTS

Operations Considered

• Product: find AB = P , given A and B.

• LU decomposition: factor A as A = PLU
P is permutation matrix,
L is unit lower-triangular,
U is upper-triangular.

• Singular value decomposition: factor A as A = UDV T

D is diagonal,
U and V are orthogonal matrices.

• Matrix inverse: given A, find B such that AB = I

• Fast Fourier Transform: given x, find y = Wx
for a fixed transform matrix W .

Postcondition is necessary and sufficient for mult, inv, fft

Comparison Tests

Tests proceed from error matrix ∆ = RHS−LHS and δ = ‖∆w‖
Error propagation bounds allow input-independent tests.
But different tests have different accuracy/flop tradeoffs

T0 : δ/‖w‖ >
< τu (trivial test)

T1 : δ/(σ1‖w‖) >
< τu (ideal test)

T2 : δ/(σ2‖w‖) >
< τu (approximate matrix test)

T3 : δ/(λ‖w‖ + σ3)
>
< τu (approximate vector test)

u is the numerical precision of the underlying hardware
threshold τ controls the false-alarm/detection tradeoff

• Ideal test T1 : derived from error propagation bounds,
but may not be computable.

• Matrix test T2 : approximate, based on computed quantities.
• Vector test T3 : also approximate, and use of vector norm

increases chance of false alarms.

Compile the threshold checks into a table

Algorithm ∆
σ1

(ideal)
σ2

(mat.)
σ3

(vec.) Note

mult P̂ −AB ‖A‖‖B‖ ‖P̂‖ ‖P̂w‖ —

lu P̂ L̂Û −A ‖A‖ ‖P̂ L̂Û‖ ‖Aw‖ σ1 easier
than σ2

svd ÛD̂V̂ −A ‖A‖ ‖ÛD̂V̂ T‖ ‖Aw‖ σ1 easier
than σ2

inv I − AB̂ ‖A‖‖A−1‖ ‖A‖‖B̂‖ ‖A‖‖B̂w‖ ‖AB̂w‖
useless

fft (ŷ −Wx)T ‖x‖ — — —

ifft (x̂−W Ty)T ‖y‖ — — —

Hatted quantities are returned by the algorithm and may be
faulty

Any standard vector norm may be used; infinity-norm is easy to
calculate

✫ ✪
C-3(6)

FAULT-DETECTION PERFORMANCE

Simulation Setup I

• Matlab simulation
• A population of random matrices is used as the input.

Inputs have condition from 21 to 220 and are randomly scaled
• Faults are injected in half these computations by first

choosing a matrix to affect, and then flipping exactly one
bit of its 64-bit representation.

• Operations tested: mult, lu, lu, svd.

Simulation Setup II

• C program running on the REE interim testbed, a parallel
system consisting of 9 processors running the Lynx OS.

• A population of uniform random matrices is used as the input.
• Each operation is done twice — faults are injected during

the second computation and the results are compared.
Zero or more faults may be injected during the faulty run.

• Operation tested: fft.

ROC Curves

Characteristics of a given scheme are concisely represented using
the standard receiver operating characteristic (ROC) curve.
For a given tolerance, some proportion of False Alarms
(numerical errors tagged as data faults) and Detections (data
faults correctly identified) will be observed.
The ROC plots these two proportions parametrically as tolerance
τ is varied.

✬ ✩

✫ ✪

D-1(7)

RESULTS: SIMULATION I

ROC Including All Faults

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Multiply, All Faults Included

|w|
|A| |B| |w|
|A B| |w|
1 + |A B w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Inverse, All Faults Included

|w|
|A| |B| |w|
|A| |Bhat| |w|
1 + |Aw| |Bhat|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: LU Decomposition, All Faults Included

|w|
|A| |w|
|Ahat| |w|
1 + |Ahat w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: SVD, All Faults Included

|w|
|A| |w|
|Ahat| |w|
1 + |Ahat w|

Pfa

Pd

The knees of these curves are rather low: many virtually
undetectable faults occur in the low-order bits of the mantissa.

A heavy price is paid for using suboptimal tests T0 and T3.

T1 and T2 show the same performance.

✬D-2(8)

RESULTS: SIMULATION I

ROC Including Significant Faults Only

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Multiply, Excluding Faults < 1.0e−08

|w|
|A| |B| |w|
|A B| |w|
1 + |A B w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Inverse, Excluding Faults < 1.0e−08

|w|
|A| |B| |w|
|A| |Bhat| |w|
1 + |Aw| |Bhat|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: LU, Excluding Faults < 1.0e−08

|w|
|A| |w|
|Ahat| |w|
1 + |Ahat w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: SVD, Excluding Faults < 1.0e−08

|w|
|A| |w|
|Ahat| |w|
1 + |Ahat w|

Pfa

Pd

We now exclude faults of relative size less than 10−8.

These curves show the usable performance of the checksum
methods.

Only T1 and T2 may be recommended; they perform well here.

✫
D-3(9)

RESULTS: SIMULATION II

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: FFT under experimental fault conditions

Pfa

Pd

ROC for uniform random matrices, including all faults.

This plot cannot be compared to those in first simulated results:
in those examples the injection of a fault is a known event,
whereas under this testbed fault environment “real” faults must
be determined by a threshold measurement of the output
difference.

✩D-4(10)

TESTING THE IMPLEMENTATION

ROC: Testing Parallel Operation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Alarms

E
rr

or
 D

et
ec

tio
ns

ROC plot for matrix multiplication of 1.0e−10 perturbed gallery matrices

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Alarms

E
rr

or
 D

et
ec

tio
ns

ROC plot for inversion of 1.0e−10 perturbed gallery matrices

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Alarms

E
rr

or
 D

et
ec

tio
ns

ROC plot for LU decomposition of 1.0e−10 perturbed gallery matrices

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Alarms

E
rr

or
 D

et
ec

tio
ns
ROC plot for singular value decomposition of 1.0e−10 perturbed gallery matrices

Parallel implementation checked by Matlab

In contrast to the results just reviewed, these curves were
generated by checking ScaLAPACK computations with Matlab.
We declare that an error has occurred when the two full results
differ by more than a fixed tolerance. Errors are detected by the
ScaLAPACK implementation.

✪
D-5(11)

CONCLUSIONS AND FUTURE WORK

Conclusions

• Theoretical results bounding expected roundoff in
computations can provide several types of input-independent
threshold tests for checksum differences.

• Readily computable tests are easy to define.
• Under simulated fault injection, the tests for mult, lu, svd,

and inv behave in good agreement with theory.
• Under more realistic fault injection conditions, a test

for fft is in good general agreement with theory.
• Tests of the numerical characteristics of our parallel

implementation indicate excellent agreement with another
numerical package.

• The ABFT fft routines have been integrated with an image
texture analysis and segmentation application; preliminary
tests indicate that the checksum scheme effectively protects
the Fourier transform operations within the application.

Future Work

• Testing of all operations under more realistic fault conditions.
• Test routines under within a more extensive software

framework, such that programs which have crashed or hung
are restarted automatically.

• Integration of the ABFT routines with several science
applications, and extensive testing thereof.

• Investigation of the feasibility of using ABFT checksum
schemes for low-level routines (addition, multiplication, etc.).

• Hardening of other routines such as sorting, order statistics,
and numerical integration.

✬ ✩

✫ ✪

E-1(12)

